
ALGORITHMIC
FINANCE

Christopher Ting
Lee Kong Chian School of Business
Singapore Management University

Version 1.1
April 10, 2018





CONTENTS

Stock Prices and Log Returns 5

3.1 Introduction 5
3.2 Historical Share Prices and Stock Splits 6
3.3 Log Prices and Log Returns 9
3.4 Modeling Stock Price Movements 12
3.5 Simulating Stock Price Movements and Reality Check 14
3.6 Statistical Tests of Normality 15
3.7 Autocorrelation of Log Returns 17
3.8 Variance Ratio Test 19
3.9 Hetroskedastic Time Series of Log Returns 24
3.10 Summary 25

Exercises 26

References 27

iii





CHAPTER 3

STOCK PRICES AND LOG RETURNS

3.1 Introduction

In Finance, the basic unit of producers of economic goods and services is a company.
Owners of a company invest their money, time and energy to produce goods and
services to generate wealth. When they do not have sufficient cash or capital to invest
or to expand the business, they borrow from others. There are a few options to raise
the capital:

Take a loan from the bank

Issue bonds

Conduct private placements of shares

Obtain stock listing in a stock exchange to issue shares to the public

A loan is a bilateral contract between the company and the bank while a bond is
a contract between the company and a number of financial institutions or retail in-
vestors. In return, company must pay interest to the bank and the bond holders. Pri-
vate placement is a business deal between the company, its business partners or ven-
ture capitalists. In a private placement, company shares are sold at a fixed price after
negotiation. It is an exclusive share offer. In contrast, stock listing on an exchange via
initial public offering (IPO) is non-exclusive. Members of the public who want to be a
co-owner of the company can bid for the shares.
Algorithmic Finance
Christopher Ting
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6 STOCK PRICES AND LOG RETURNS

Figure 3.1 A specimen of GE common stock certificate (source: NYSE).

A share of a stock is a contract that confers company ownership to shareholders
under well-specified terms. Shareholders are not liable to meet the demand of the
company’s creditors should the company go bust. They have the right to vote during
annual and extraordinary general meetings. One share is entitled to one vote and it
is a slice of the company’s equity, which is whatever left over after the company’s
liability is fully accounted for by the company’s asset.

It is important to recognize from the investment standpoint that the main reason
for investing in stocks is that the company is profitable in its business, and the eq-
uity remains positive and growing. Mature companies usually distribute earnings as
dividend or other types of distribution such as bonus shares to the shareholders.

On the other hand, shareholders are not answerable to the company’s creditors.
On accounting terms, a company’s equity—asset less liability—can be negative. Even
if the company has more liability than asset, shareholders do not have to make up
for the shortfall. So, the value of a share cannot be negative. Since the share value is
always positive, the share price must also be strictly positive.

3.2 Historical Share Prices and Stock Splits

As a publicly listed company, the stock is open for trading for several hours each busi-
ness day on an exchange. The last traded price of the day is typically recorded in the
press. It is important to note that the last traded price does not occur exactly at the
closing time of the exchange. For example, on the New York Stock Exchange, the clos-
ing time is 4:00 PM Eastern Time. Some stocks may have 4:00 PM when the last trades
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occur. Other stocks may have the last trade any time before 4:00 PM. Nonetheless, the
last trade price is taken as the closing stock price for the day.

Note that the time t is implicitly assumed to be progressing at a fixed quantum. If
Pt is the closing price at time or day t, then Pt−1 is the closing price a day earlier, and
Pt+1 is the closing price at day later. The day here refers to business day when trading
occurs. Sundays, Saturdays, and public holidays are non-business days. If Pt is the
closing price for Friday, then Pt+1 denotes the closing price for Monday.

Though stocks were traded since the 17th century in Holland, a comprehensive and
systematic archive of stock prices however, dates back to 31 December, 1925 only in
CRSP’s database. Take General Electric as an example. This company has an illustri-
ous history going back to 1890. It was founded by the renowned inventor Thomas
Edison. Two years later, General Electric was formed after Edison’s company was
merged with its rival, Thomson-Houston Electric Company. Shares were issued (see
Figure 3.1) and started trading on NYSE. On its first day of trading, only 50 shares
changed hands at $108 per share. In May 1896, General Electric was selected as one of
the 12 original companies in the newly formed Dow Jones Industrial Average Index.

Figure 3.2 Adjusted closing prices of GE from end of 1925 through end of 2011 (data source: CRSP).

The historical closing prices of General Electric are plotted in In Figure 3.2. It is
evident from the time-series plot that the stock price increases exponentially from
end of December till the all-time high of $60 per share on August 28, 2000. On March
3, 2009, the share price dropped to $7.01, or more than 88% from the all-time high.

By eyeballing the data, we find that GE was actually traded at hundreds of dollars
in the 1920’s. But Figure 3.2 shows that the share price was less than a dollar. The
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reason is that the time series of stock prices and volumes must be adjusted for stock
splits. When a company’s share price increases rapidly, it becomes “expensive.” The
company decides to split one share into x shares, thereby reducing the share price by
x times. For example, GE’s most recent stock split occurred on May 8, 2000 when a
share split into 3 shares. Everything else being equal, the share price must therefore
be 1/3 of the pre-split or “old” price, so that the dollar value of holding the shares
remains unchanged. In other words, the market capitalization, which is the number
of shares Nold times the stock price Pold, i.e.

MCold = Nold×Pold ,

must not change under a stock split.
Now, the new number of new shares is Nnew = xNold. It follows that

MCold = xNold×
Pold

x
= Nnew×Pnew ,

where Pnew = Pold/x.
Suppose there were n stock splits in the past, and the split ratios were xi, i,= 1,2, . . . ,n,

respectively. How should the historical prices be adjusted when more than one stock
split occurred? To answer this question, consider the diagram in Figure 3.3, where 3
stock splits had occurred at times t1, t2, and t3, with t3 being the most recent.

x3

t3

x2

t2t1

x1

Time t

Figure 3.3 Multiple stock splits.

To compute the adjustment factor, we start from the most recent stock split at time
t3. The stock split at time t3 requires prices to be adjusted from t3−1 all the way back
into the historical past. Similarly, the stock split at t2 necessitates the adjustment from
t2 − 1 backward in dates; and the stock split at t1 needs further adjustment to the
historical prices from t1− 1 backward. In other words, from t2 to t3− 1 (inclusive of
both dates), the price adjustment factor is d3 = x3. For the time period from t1 to t2−1,
the adjustment factor is d2 = x2d3 = x2x3; and finally before t1, the adjustment factor is
d1 = x1d2 = x1x2x3.

At and after the time tn of the most recent stock split, the closing price needs no
adjustments. For convenience, we define dn+1 = 1. The cumulative adjustment factor
after i stock splits is thus given by

di = xidi+1 = x1x2 · · ·xi ,

for i = n,n−1, . . . ,1. Given that each stock split ratio is 2 or higher, it is obvious that

1 = dn+1 < dn < dn−1 < · · ·< d2 < d1.
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In other words, when many stock splits had occurred, the adjustment factor increases
in a stepwise fashion backward in time. So, at the chronological beginning of the time
series of share prices, the adjustment factor is the largest, and that is why before 1960,
the adjusted prices of GE are less than a dollar as in Figure 3.2.

The ratios of stock splits (that are integers) for GE are listed in the table below.

Split Date Split Ratio Cumulative Adjustment Factor

4,608

19260527 4 1,152

19300128 4 288

19540614 3 96

19710608 2 48

19830602 2 24

19870526 2 12

19940516 2 6

19970512 2 3

20000508 3 1

In this example, a total of 9 stock splits had occurred. Using the method described,
we have d10 = 1. The most recent stock split occurred on May 8, 2000, when a share
was split into 3 shares. Accordingly, d9 = 3, which applies to prices from May 12, 1997
to a business day before May 8, 2000. The next most recent stock split gives rise to
d8 = 2× 3 = 6. With d4 = 96, d3 = 288 and so on, and since adjustment is carried out
by dividing the pre-split stock price by the applicable adjustment factor, it is easy to
appreciate why the adjusted prices become smaller and smaller.

3.3 Log Prices and Log Returns

In Figure 3.4, the log price p = ln(P) is plotted instead. The logarithm function trans-
forms the exponentially increasing price P into a log price p that appears more bal-
anced in highlighting the price fluctuation.

It is noteworthy that in contrast to the price P, the log price p can be negative, for
the logarithm function yields negative values when P is less than $1. In light of Figure
3.4, a great deal of ups and downs become visible in the early part of the time series.
There was a rapid increase in the share price since December 1925 till 1929 when the
peak was reached on August 19. What follows was the Great Depression in 1930’s,
during which the share price dropped by more than 90% from the peak.

The time series of log prices demonstrates clearly that risky asset such as GE stock
produces a good return over a long period of time. In the worst case scenario, suppose
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Figure 3.4 Adjusted logarithmic closing prices of GE from end of 1925 through end of 2011 (data source: CRSP).

an investor bought GE shares at the height of the 1920s’ bubble, and sold the shares
at the bottom of the 2007–2009 financial crisis, the log price difference would be

ln(7.01)− ln(398.75/1152) = 3.0083.

Note that 7.01 is GE’s closing price on March 3, 2009 mentioned previously. The last
traded price on Aug 19, 1929 is 398.75, and 1152 is the applicable price adjustment
factor.

Now, the log price difference is in related to return r. To substantiate this claim,
consider the return

r =
Pu−Pt

Pt
=

Pu

Pt
−1.

In other words,
Pu

Pt
= 1+ r,

where the time u is later than t. Apply the logarithm on both sides, we find

ln(Pu)− ln(Pt) = ln
(

Pu

Pt

)
= ln(1+ r).

Accordingly, the log price difference is related to return r by the logarithmic function
of r.

If the return r is obtained over T number of years, the annualized return ra can be
backed out by the following formula,

(1+ ra)
T = 1+ r =

Pu

Pt
.
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This equation suggests that ra is the compound annual growth rate averaged across T
years. To back out ra, we rewrite the equation as

ln(1+ ra) =
ln(Pu)− ln(Pt)

T
.

It follows that

ra = exp
(

ln(Pu)− ln(Pt)

T

)
−1.

In the worst case scenario described above, we have ln(Pu)− ln(Pt) = 3.0083. From
Aug 19, 1929 (time t) to Mar 3, 2009 (time u), for which the number of years T is
approximately 80. Inserting these data into the equation, we find that

ra ≈ exp
(
3.0083/80

)
−1 = 3.8320%.

The capital appreciation of GE stock over these 80 years was 3.8320% per year.
We note that

3.0083
80

= 3.7604%,

which is a mere difference of 0.0716 percentage points from ra. To account for the small
difference, we perform Taylor’s expansion and obtain

ln(1+ ra) = ra−
1
2

r2
a +

1
3

r3
a + · · ·

For small ra, we have
ln(1+ ra)≈ ra .

Accordingly,
ln(Pu)− ln(Pt)

T
≈ ra .

Motivated by this finding, we proceed to define continuously compounded rate of
return rc as follows. Given two prices Pu and Pt at times u and t, which are T years
apart, i.e., u− t = T years. The log return r` is defined as the difference of log prices:

r` := ln(Pu)− ln(Pt) .

The rate of log return, also known as the continuously compounded rate of return
rc, is defined as

rc =
r`
T

=
ln(Pu)− ln(Pt)

T
.

A few simple steps lead to
Pu = PtercT . (3.1)

This equation suggests that, on average, the stock price increases exponentially from
the initial price of Pt over T years, i.e., u−t = T . Indeed, Figure 3.2 provides an example
of the exponential growth.
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3.4 Modeling Stock Price Movements

Earlier, by introducing a continuously compounded rate of return, a simple model of
stock price is obtained.

Pt = P0erct . (3.2)

This simple equation is a rewrite of equation (3.1), with t replaced by 0, u replaced by
t, and hence T = t−0 = t.

The model is crudely simple. The randomly wiggling and undulatory nature of the
path taken by the stock price is missing in the model. As a matter of fact, model (3.2) is
deterministic. Going forward in time, it can only increase and not decrease. Moreover,
with Pt being an exponential function of time t, it is smooth; Pt can be differentiated

infinitely many times, i.e.
dhPt

dth = rh
cPt , for h = 1,2, . . . ,∞. Clearly, the price path in Fig-

ure 3.2 is anything but smooth.
A natural improvement to model (3.2) is to postulate that the log return is random.

Specifically, we alter the constant rc into a function of the random variable Xt

rc(Xt) = r+σXt . (3.3)

In words, we let the log return rc to fluctuate with respect to an “average” value r. The
fluctuation is captured by the random variable, Xt , and the magnitude of fluctuation
is given by a constant parameter σ . It is easy to see that rc as defined in equation (3.3)
is a generalization of model (3.2). If we set σ to zero, then rc(Xt) = r is a constant and
model (3.2) is recovered. With random function (3.3), we have

Pt = P0ert+σtXt . (3.4)

The legacy from the deterministic model (3.2) can still be seen in P0ert .
To gain insight into model (3.4), we partition the time interval from time 0 to time t

by n subperiods. The duration of each time interval ∆t is

∆t =
t
n
.

Altogether, there are n intervals of equal length. A pictorial illustration of the uniform
partition is depicted in Figure 3.5. To simplify the notation, we write τk = k∆t, where

0 ∆t 2∆t (n−2)∆t (n−1)∆t t

Figure 3.5 Partition of the time from 0 to t by n equal intervals.

k = 0,1,2, . . . ,n−1,n. In this notation, τ0 = 0, and τn = t. With regard to this partition,
there are n random variables Xτk , where k = 1,2, . . . ,n.
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Consequently, the stock price at time τ1 according to model (3.4) is

Pτ1 = Pτ0er∆t+σ∆tXτ1 .

In general,
Pτk = Pτk−1er∆t+σ∆tXτk . (3.5)

By repetitive substitution, we find that

Pt = Pτn = P0ert+σ∆t ∑
n
i=1 Xτi .

So far, we have not specified the behavior of the random variable Xt . We make fur-
ther assumption on Xτi as follows:

Xτi :=
1√
∆t

Yτi =

√
n
t
Yτi, i = 1,2, . . . ,n, (3.6)

where Yτi is a Bernoulli random variable, which takes the value of either 1 or −1 with
equal probability. We also assume that Yτi is independent of each other.

Now, the discrete Bernoulli random variable has mean 0 and variance 1, i.e., E
(
Yτi

)
=

0, and V
(
Yτi

)
= 1. Consequently,

E
(

ln(Pt)− ln(P0)
)
= rt, (3.7)

V
(

ln(Pt)− ln(P0)
)
= σ

2(∆t)2 n
t

n

∑
i=1

V
(
Yτi

)
= σ

2 t2

n2
n
t

n (3.8)

= σ
2t. (3.9)

In other words, the expected value of the log return is rt, and the variance of the log
return is σ2t. The parameter σ2 can be interpreted as the rate of variance.

In fact, the constant 1/
√

∆t in Equation (3.6) is deliberately included so that the
variance of log return scales linearly with time t. The paradigm in which we operate
is the random walk model. Specifically, from Equations (3.5) and (3.6), we have the
random walk model as follows:

ln
(
Pτk

)
− ln

(
Pτk−1

)
= r∆t +σ∆tXτk = r∆t +σ

√
∆tYτk .

It can be readily shown that E
(

ln
(
Pτk

)
−ln

(
Pτk−1

))
= r∆t, and that E

(
ln
(
Pτk

)
−ln

(
Pτk−1

))
=

σ2∆t. Since the variance increases linearly with time t, random walks, being a model
for log prices, are non-stationary.

Now, if we set the time scale in such a way that ∆t = 1, then the 1-period log return
rτk := ln

(
Pτk

)
− ln

(
Pτk−1

)
is a random walk with drift r. In other words, the deviation

from the mean r is purely random:

rτk− r = σYτk . (3.10)
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3.5 Simulating Stock Price Movements and Reality Check

A simulation of the price process model (3.5) with Bernoulli fluctuation is shown in
Figure 3.6. The simulated price series looks realistic and qualitatively similar to the

Figure 3.6 Simulated prices using model (3.5)

time series of GE prices in Figure 3.2. However, this model of price process has a
fundamental flaw. Namely, as seen from equation (3.5), the log return is restricted to
take two values only, either r∆t−σ

√
∆t or r∆t +σ

√
∆t, since ∆t, r, and σ are fixed. In

reality, the log return of any stock such as GE can have many different values.
Therefore, instead of the over-simplified model to drive the stock price fluctuation,

we substitute the Bernoulli random variable Yτi in Equation (3.10) by a standard nor-
mal random variable, which too has zero mean and unit variance. It turns out that the
resulting price model is the discretized version of the well known geometric Brownian
motion, for which the log return is a normally distributed random variable.

Definition 3.1 A discretized geometric Brownian motion is a purely random process
by which the log price is purely random in such a way that the log retun is a standard
normal random variable Yt in the one-period setting:

Yt ∼ N(0,1).

In other words, the deviation of one-period log return from its mean, Equation
(3.10), is pure noise, i.e.,

Xt := rt− r = σYt . (3.11)
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Now, does the geometric Brownian motion correspond to reality? In Figure 3.7, the
histogram of the log returns of GE is plotted. It displays the number or frequency of
realized log returns with respect to the discrete interval of their values. For compar-
ison, values of a normally distributed random variable are generated, and their his-
togram is superimposed as a solidly filled plot. The total number of these randomly
generated values is the same as GE’s total number of log returns observed over the
sample period. The simulated values are generated in such a way that their mean and
variance are the same as those of GE’s log returns.

Figure 3.7 Histogram (in vertical strips) of GE’s log returns and that (in solidly filled shape) of normally distributed random
numbers, which are generated in such a way that their mean and variance match those of GE’s log returns.

In comparison to the simulated histogram, the realized log returns have many “out-
liers” in the sense that there are more extreme values. For example, it is noticeable that
the log returns of about -2% or lower occur more frequently than normally distributed
random values do. Similar thing can be said of returns that are 2% or higher. Con-
versely, small returns around the mean are more frequent than normal distribution.
It is intuitively evident that the distribution of GE’s daily log returns is not a normal
distribution. Hence, the stock price process is most likely not a geometric Brownian
motion.

3.6 Statistical Tests of Normality

Jarque and Bera [JB87] provide a test to infer whether a sample of log returns is drawn
from a normal distribution. Recall that a normal distribution is defined by its mean
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µ and variance σ2. Since the distribution is symmetric with respect to the mean, any
higher odd-order (centralized) moment is zero. The skewness of a random variable X ,
which is of the third order, is defined as

γ =
E
(
(X−µ)3)

σ3 .

The skewness measures the slant of the distribution. It is negative when the distribu-
tion is skewed toward the left, i.e., there are “outliers” to the left of the mean. Con-
versely, a positive skewness indicates the presence of extreme values to the right of
the mean. Being symmetric, the skewness of the normal distribution is zero.

On the other hand, all the even-order (centralized) moments of a normally dis-
tributed random variable are not zero. In particular, the kurtosis, which is defined
as

κ =
E
(
(X−µ)4)

σ4 ,

is a fourth-order statistic, and it measures the frequency of extreme values expected
of a distribution. For the normal distribution, the kurtosis is 3.

To examine whether a sample of T observations is normally distributed, we con-
sider the Jarque-Bera statistic:

JB =
T
6

(
γ̃

2 +
(κ̃−3)2

4

)
. (3.12)

Here, γ̂ is the sample skewness and κ̂ is the sample kurtosis, which are estimated in
the following way. First, the sample average is estimated:

x =
1
T

T

∑
t=1

xt .

Next, the estimate for the variance is based on the following estimator:

σ̃
2 =

1
T

T

∑
t=1

(
xt− x

)2
.

Finally, the estimate for the skewness is obtained as

γ̃ =
1
T ∑

T
t=1
(
xt− x

)3

σ̃3 ,

and the sample kurtosis is computed as

κ̃ =
1
T ∑

T
t=1
(
xt− x

)4

σ̃4 .

As can be seen from expression (3.12), a large value of γ̃ and/or a large difference
of κ̃ from 3 will lead to a large value for the Jarque-Bera statistic. Since the skewness
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observations skewness kurtosis Jarque-Bera statistics

daily 22,776 0.025999 13.13398 97,462.5

weekly 4,486 -0.04181 10.00023 9,160.8

monthly 1,032 -0.31251 7.77295 996.4

quarterly 344 -0.27640 6.66580 197.0

biannual 172 -0.94224 6.47470 112.0

yearly 86 -0.88798 4.26247 17.0

Table 3.1 Results of Jarque-Bera tests for GE’s log returns at different frequencies.

and kurtosis are, respectively, 0 and 3 for the normal distribution, a large Jarque-Bera
statistic provides a measure for the deviation from normality.

To conduct the Jarque-Bera test, we set the null hypothesis as H0 : JB = 0. The al-
ternative hypothesis is H1: JB 6= 0. Jarque and Bera show that the JB statistic is a χ2

2
distributed random variable with 2 degrees of freedom [JB87]. We perform 6 separate
tests for daily, weekly, monthly, quarterly, biannual, and yearly log returns. Table 3.1
shows the relevant statistics in the context of Jarque-Bera tests.

The critical or cut-off value of chi-square statistic at the 0.5% significance level is
10.597. Since all the Jarque-Bera statistics are greater than 10.597, there is evidence to
reject the null hypothesis of normality. It is also noteworthy that the kurtosis decreases
monotonically as the sample frequency increases.

3.7 Autocorrelation of Log Returns

The mean, variance, skewness, and kurtosis, do not take the temporal structure of the
log returns into account. The time t of the log return rt is used purely as the index in
the summation when these descriptive statistics are computed. The histogram, too,
does not provide information about the temporal sequence of the log return.

This section provides a different statistical tool to ferret out any insightful informa-
tion that might be hidden in the temporal realm of rt .

Definition 3.2 We define the autocorrelation of a time series xt as the correlation of xs

with xt , for all s and t.

ρ(s, t) :=
C
(
xs,xt

)√
V
(
xs
)√

V
(
xt
) .

It is evident that ρ(t, t) = 1. The question of interest is ρ(s, t) for s = t−1, t−2, . . . , t−k.
Accordingly, we have the following definition.
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Definition 3.3 We define an autocorrelation function (ACF) up to lag k as follows:

ACF(h) :=
C
(
xt−h,xt

)√
V
(
xt−h

)√
V
(
xt
) , for h = 0,1,2, . . . ,k.

To simplify the analysis, an important assumption of homoskedasticity is made.
Namely, for all h,

V
(
xt
)
= V

(
xt−h

)
= σ

2 . (3.13)

Under this assumption, the autocorrelation function is written as

ACF(h) =
C
(
xt−h,xt

)
σ2 , for h = 0,1,2, . . . ,k.

Following [BJR94], given a time series of T observations {xt}T
t=1, the sample estimate

of ACF(h) for h = 0,1,2, . . . ,k, can be obtained as

γh =
ch

c0
,

where

ch =
1

T −h

T

∑
t=h+1

(xt− x)(xt−h− x), (3.14)

and x is the sample mean x =
T

∑
t=1

xt

T
. In Equation (3.14), note that the summation index

starts from t = h+1. This is simply because the time series starts from t = 1 and xt−h is
meaningless if t < h+1.

Intuitively, γh for a given h is the correlation between the random variable at time t
with the same random variable at a different time t−h. Suppose γh is 0.7 and the au-
tocorrelations at other lags are all zero. Then roughly speaking, there is a 70% chance
that xt is positive in this (hypothetical) example.

Panel A of Figure 3.8 plots the sample ACF(20) of the daily log price of GE. For lag
1 to lag 20, the values of γh are close to 1, which provides little information about the
temporal structure of pt . A possible explanation is that the sign of log price at time
t− i and the sign at time t are almost always the same when i is a small number. More
importantly, the value of the log price pt at time t is usually not much different from
pt− j when normalized by c0. Even despite the fact that the log price of GE can be
either positive or negative as evident in Figure 3.4, the temporal structure nonetheless
is such that they are highly correlated. This characteristic of γ j ≈ 1 for j = 1,2, . . . is
typical of a non-stationary time series. Although not statistically rigorous, the sample
ACF does provide a quick diagnosis of whether a time series is non-stationary.

By contrast, Panel B shows that the daily log returns at different times have prac-
tically no correlations at all. Some of the γh are however statistically significant. As
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(A) Log Price (B) Log Return

Figure 3.8 Two sample ACF(20) of GE’s daily log price (left) and log returns (right).

shown by [Bar46], the variance of γh is well approximated by 1/T . Consequently, a
large T gives rise to a small variance, and thus it is easy for even a small γh estimates
to exceed the two-tail critical values, which are indicated by two blue lines parallel to
the horizontal axis.

Since the log return is the first difference of the log price, i.e.,

rt = ∆pt = pt− pt−1 = ln(Pt)− ln(Pt−1),

it can be said that the log price difference ∆pt at time t has no memory of the past log
price difference ∆pt−i. In this context, using the past daily return to forecast the future
daily return is quite futile.

3.8 Variance Ratio Test

When the daily log return rt is treated as a random variable, the variance of a sum of
q daily log returns in sequel is

V

(
q

∑
t=1

rt

)
=

q

∑
t=1

V
(
rt
)
+2

q

∑
t=1

q

∑
s<t

C
(
rs,rt

)
.

To simplify the analysis, two assumptions are made, as we did before:

1. Zero covariance: C
(
rs,rt

)
= 0 for any s 6= t

2. Homoskedasticity: V
(
rt
)
= σ2
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Definition 3.4 The non-overlapping q-daily log return is defined as

rt(q) :=
q

∑
j=1

rt−q+ j =
(

lnPt− lnPt−1
)
+
(

lnPt−1− lnPt−2
)
+ · · ·

· · ·+
(

lnPt−q+2− lnPt−q+1
)
+
(

lnPt−q+1− lnPt−q
)

= lnPt− lnPt−q.

Definition 3.5 The variance ratio for the q-period log return is defined as

VR(q) =
V
(
rt(q)

)
qσ2 .

Under the assumptions of zero covariance and homoskedasticity,

V
(
rt(q)

)
= V

(
q

∑
t=1

rt

)
=

1

∑
t=1

V(rt) = qσ
2.

In this expression, the constant σ2 is the variance of daily log return. It follows that
VR(q) should be equal to one when the conditions of log returns being serially uncor-
related and homoskedastic are satisfied. The variance ratio test is a test of

H0 : VR(q)−1 = 0 versus H1 : VR(q)−1 6= 0.

If the null hypothesis cannot be rejected, then it means that the two assumptions made
are consistent with the reality. Conversely, a rejection of H0 implies that either one or
both of the assumptions is/are inconsistent with the data.

To set up the framework for inference, we recall a few definitions and facts. The
sample mean of daily log returns is estimated as usual,

r̂1 =
1
T

T

∑
t=1

rt .

The sample variance of daily log returns is estimated as

σ̂
2
1 =

1
T

T

∑
t=1

(
rt− r̂1

)2
.

The subscript of 1 in r̂1 and σ̂2
1 is meant to indicate that these estimates are for daily

log returns. By the law of large numbers, as T −→ ∞,

E
(
σ̂

2
1
)
=

1
T

T

∑
t=1

E
((

rt− r̂1
)2
)
−→ σ

2.
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This result is a reflection of the fact that the variance estimator σ̂2
1 is a consistent esti-

mator.

Proposition 3.6 Asymptotically, when T → ∞,

V
(
σ̂

2
1
)
=

1
T 2

T

∑
t=1

V
((

rt− r̂1
)2
)
−→ 2σ4

T
.

Proof : From Equation (3.11), it is clear that, for the log return, the deviation from the
mean, i.e., rt− r̂1, is σYt , where Yt is a standard normal random variable. Hence, given
the assumption of zero covariance and homoskedasticity,

V
(
σ̂

2
1
)
=

1
T 2

T

∑
t=1

V
((

rt− r̂1
)2
)
=

1
T 2

T

∑
t=1

V
((

σYt
)2
)

=
1
T
V
(
σ

2Y 2
t
)
=

σ4

T
V
(
Y 2

t
)

Now, it is a known fact in probability & statistics that if Yt is s standard normal
random variable, then Y 2

t is a chi-square random variable with one degree of free-
dom. Also, the variance V

(
Y 2

t
)

of the chi-square random variable with one degree of
freedom is 2.

By the central limit theorem, as T −→ ∞,
√

T
(
σ̂

2
1 −σ

2)∼ N(0,2σ
4).

Now the non-overlapping q-daily return denoted by rq( j) can be written as

rq( j) = lnPq j− lnPq( j−1),

for j = 1,2, . . . ,M, where M is the maximum number of non-overlapping q-daily re-
turns that are obtainable from T + 1 prices starting from P0. The sample average of
rq j(q) is simply q times of r̂1, i.e., qr̂1, in accordance to the linear scaling law, Equation
(3.7). The sample variance is then estimated by

σ̂
2
q =

1
M

M

∑
j=1

(
rq( j)−qr̂1

)2
.

Proposition 3.7 Asymptotically, as M→ ∞,

E

(
σ̂2

q

q

)
=

1
Mq

M

∑
j=1

E
((

rq( j)−qr̂1
)2
)
−→ σ

2
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Proof : The q-daily log return rq( j) for each j is a sum of q daily returns.

rq( j) = rq j + rq j−1 + · · ·+ rq( j−1)+1.

Applying Equation (3.11), we obtain

rq( j)−qr̂1 = (rq j− r̂1)+(rq j−1− r̂1)+ · · ·+(rq( j−1)+1− r̂1)

= uq j +uq j−1 + · · ·+uq( j−1)−1. (3.15)

Since all the Yt has zero covariance with each other, and since E(Yt) = 0,

E
((

rq( j)−qr̂1
)2
)
= E

(
q−1

∑
i=0

u2
q j−i

)
=

q−1

∑
i=1

σ̂
2
1 = qσ̂

2
1 ( j).

The index j indicates that all the dispersions Yt belong to the j-th sample. Conse-
quently,

E

(
σ̂2

q

q

)
=

1
M

M

∑
j=1

σ̂
2
1 ( j).

Therefore, when M is large, the expected value of q-daily variance divided by q ap-
proaches the true value of the daily variance σ2.

Proposition 3.8 Since Mq = T , the asymptotic limit of the variance of σ̂2
q is

V

(
σ̂2

q

q

)
=

1
M2q2 V

(
M

∑
j=1

(
rq( j)−qr̂1

)2

)
−→ 2qσ4

T
.

Proof : In view of Equation (3.15), we have M chi-square random variables, and the
degrees of freedom of each is q.

1
M2q2 V

(
M

∑
j=1

(
rq( j)−qr̂1

)2

)
=

1
Mq2 V

(
q

∑
j=1

Y 2
j

)
=

1
(Mq)q V

(
q

∑
j=1

Y 2
j

)

=
1

T q
V
(
qσ̂

2
1Y 2

j
)
=

q
T

σ̂
4V
(
Y 2

j
)

=
2qσ̂4

T
.

By the central limit theorem, as M −→ ∞,

√
Mq

(
σ̂2

q

q
−σ

2

)
∼ N

(
0,2qσ

4).



VARIANCE RATIO TEST 23

To perform the test, we define the sample statistics

Jd(q) :=
σ̂2

q

q
− σ̂

2
1 ;

Jr(q) :=
σ̂2

q

qσ̂2
1
−1 = V̂R(q)−1.

It turns out that the asymptotic distributions of
√

MqJd(q) and
√

MqJr(q) are normal
with mean 0 and variances of, respectively, 2(q− 1)σ4 and 2(q− 1) (see Chapter 2 in
[CLM97]) : √

MqJd(q)∼ N
(
0,2(q−1)σ4);√

MqJr(q)∼ N
(
0,2(q−1)

)
. (3.16)

In light of (3.16), for q > 1, the z score is computed as

Zq =
√

qM
Jr(q)√
2(q−1)

∼ N(0,1).

We use the daily log returns of GE to conduct the variance ratio tests1 for q =

2,3, . . . ,10. In other words, the sample mean r̂1 and sample variance σ̂2
1 are estimated

with daily log returns. In Table 3.2, we present the results of the variance ratio tests.
For reference, we also tabulate the autocorrelations at first lag.

q 1 2 3 4 5 6 7 8 9 10

Obs 22,776 11,388 7,592 5,694 4,555 3,796 3,253 2,847 2,530 2,277

γ1 -0.017 -0.048 -0.021 -0.029 -0.003 -0.037 -0.037 -0.004 0.027 -0.010

V̂R(q) 1 1.002 0.946 0.939 0.916 0.926 0.968 0.933 0.871 0.920

Zq — 0.20 -4.08 -3.74 -4.46 -3.53 -1.40 -2.69 -4.85 -2.86

Table 3.2 Results of variance ratio tests based on GE’s daily log returns.

We find that the variance ratios are generally above 0.9 with the exception of q = 9.
It is clear, however, that the null hypothesis must be rejected for all q except for q = 2
and q = 7. A rejection of the null hypothesis means that either serial correlation or
homoskedasticity, or both are not compatible with the empirical evidence. Though
only γ1 for each q is tabulated, it is a proxy for the order of magnitude of the other
ACF(20)’s lags. The implications of these findings is that the homoskedasticity as-
sumption as stated in equation (3.13) is likely to be the main source that causes the
rejection.

1A reference for this part is [Lim11].
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3.9 Hetroskedastic Time Series of Log Returns

When the assumption of homoskedasticity fails to hold, the time series is said to be
heteroskedastic. As shown in Figure 3.9, the time series of GE’s log returns exhibits
non-uniform magnitude of fluctuation. Notably during early 1930’s, early 2000’s, and
also from 2008 to 2009, the magnitude of fluctuation is a lot larger. Though less pro-
nounced, pockets of high volatility, which is the intuitively the amplitude of log re-
turn, are still observable against the backdrop of much milder fluctuation. This tem-
poral structure of volatility clustering is an ubiquitous feature of many financial time
series.

Figure 3.9 Log returns of GE from the beginning of 1926 through end of 2011, along with the upper (in black) and lower
(in red) outlines of the volatility clusters.

Shown in Figure 3.9 are the outlines of the clusters. These outlines are obtained by
averaging the daily log returns. The following smoothing algorithm is used:

1. Select the half window size, which is denoted by w

2. Compute the smoothed log return r̃t for each time t by

r̃t =
1
n

w

∑
j=−w

rt+ j1rt+ j>01rt+ j<κ ,

where n is the number of daily log returns in the time window for which−w≤ j≤
w, and satisfy the two conditions of rt+ j > 0 and rt+ j < κ . The threshold parameter
κ is a positive number.

3. Nonlinearly scale the smoothed log return r̃t to obtain the upper cluster outline or
envelope at time t:

r]t = exp
(
λ r̃t
)
× r̃t .
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The amplification parameter λ is also a positive constant.

4. Compute another smoothed log return r̃t for each time t by

r̃t =
1
n

w

∑
j=−w

rt+ j1rt+ j<01rt+ j>−κ .

5. Nonlinearly scale the smoothed log return r̃t to obtain the lower cluster outline or
envelope at time t:

r[t = exp
(
−λ r̃t

)
× r̃t .

In Figure 3.9, we use the half window size w = 252, which is about a calendar year.
Therefore, for each day t, the smoothed log return is centered with respect to a year of
log returns in the past, and a year of log returns in the future. The threshold parameter
κ is set equal to 0.05 to filter out extreme log returns. To sharpen the contrast between
peaks and troughs, the parameter λ is set to a value of 80.

By counting the number of peaks in the upper and lower outlines, we find 13 volatil-
ity clusters in Figure 3.9. So, over 86 years, the volatility cluster takes about 7.17 years
to complete a cycle on average. What is the implication of this finding? First, multi-
year oscillations suggest that volatility is cyclical in nature and it is important to know
at which phase the volatility is in, whether it is moving up toward the peak, or com-
ing down into the valley. Second, since each cycle or cluster has different length and
overall amplitude of fluctuation, volatility is stochastic even at the multi-year scale.

3.10 Summary

Using GE stock as the example, this chapter provides an account of how the time
series of stock prices is to be adjusted for stock splits and stock dividends. A takeaway
is that it is more informative for long-term investors of GE Stock to look at the time
series at the log scale, i.e., log prices.

By examining the log returns based on the variance ratio test and the Jarque-Bera
statistic, we find that the log returns are by no means normally distributed and the
log price is not a random walk. The implication is that there might be some pockets
of opportunities for the pundits who think they have good trading strategies to “beat
the market.”

Using the simple autocorrelation analysis, we also show that log prices are non-
stationary and log returns have virtually no serial correlation. In other words, it is
very hard to beat the market, for otherwise, too many traders would profit from their
“technical analyses,” the very notion of which is self-contradictory.

Finally, this chapter also provides a simple and intuitive tool to evaluate the volatil-
ity on a macro scale. The upshot is that for the sample period from the beginning of
1926 to the end of 2011, clusters are evident and surely it is crucial to know the phase
at which the volatility is at.
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EXERCISES

3.1 Suppose there are 12 daily log returns, r1,r2, . . . ,r12, and their values are 0.5%,
1.0%, −1.1%, −1.2%, 1.3%,0.7%,−0.1%,−0.4%,0.9%,0.6%, −1.5%, and −0.8%.

(a) Suppose initially the price is P0 = $10. What is the price at time 12?

(b) What is the (arithmetic) average daily return?

(c) What is the sample variance σ̂2
2 of the bi-daily log return?

(d) What is the first-lag autocorrelation of bi-daily log returns?

(e) What is the variance ratio V̂R(3) of 3-daily return?

(f) What is the Z3 score of the variance ration for 3-daily return?

(g) What are the three 4-daily log returns?

3.2 Martingale is a concept that says that given all the past prices, the prediction of
tomorrow’s price is the price today. Mathematically, suppose {Pt}T

t=1 is a stochastic
process. It is said to be a martingale if

E(Pt+1|Pt ,Pt−1, . . .) = Pt .

Equivalently, since Pt is a known constant at time t,

E
(
Pt+1−Pt |Pt ,Pt−1, . . .

)
= 0.

Now, consider instead the mean-squared error forecast Xt , which is expressed as

E
(
(Xt−Pt+1)

2∣∣Pt ,Pt−1, . . .
)
=: f

(
Pt+1,Xt ;Pt ,Pt−1, . . .

)
Show that when Xt = Pt , the function f

(
Pt+1,Xt ;Pt ,Pt−1, . . .

)
is at its minimum. Specifi-

cally,
f
(
Pt+1,Xt = Pt ;Pt ,Pt−1, . . .

)
= E

(
P2

t+1−P2
t
∣∣Pt ,Pt−1, . . .

)
.

3.3 Consider a drift-less random walk on a discrete grid of 18 points labeled as 0
through 17. Suppose you have equal probability of stepping up or down. The random
walk will stop when you reach the boundary of 0 or 17. If you start at point 7, what is
the probability that you arrive at 17 before you arrive at 0?
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